
Automatic Discovery and Classification of Bioinformatics Web
Sources

�
Daniel Rocco

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

Terence Critchlow
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551

Abstract

Motivation: The World Wide Web provides an in-
credible resource to genomics researchers in the
form of query access to distributed data sources—
e.g. BLAST sequence homology search interfaces.
The number of these autonomous sources and their
rate of change outpaces the speed at which they can
be manually classified, meaning that the available
data is not being utilized to its full potential. Man-
ually maintaining a wrapper library will not scale to
accommodate the growth of genomics data sources
on the Web, challenging us to produce an automated
system that can find, classify, and wrap new sources
without constant human intervention. Previous re-
search has not addressed the problem of automati-
cally locating, classifying, and integrating classes of
bioinformatics data sources.
Results: This paper presents an overview of a
system for finding classes of bioinformatics data
sources and integrating them behind a unified inter-
face. We describe our approach for automatic clas-
sification of new Web sources into relevance cat-
egories that eliminates the human effort required
to maintain a current repository of sources. Our
approach is based on a meta-data description of
classes of interesting sources that describes the im-
portant features of an entire class of services without
tying that description to any particular Web source.
We examine the features of this format in the con-
text of BLAST sources to show how it relates to
Web sources that are being described. We then
show how a description can be used to determine
if an arbitrary Web source is an instance of the
described service. To validate the effectiveness of
this approach, we have constructed a prototype that
correctly classifies approximately two-thirds of the�

This work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48. UCRL-JC-152980.

BLAST sources we tested. We conclude with a dis-
cussion of these results, the factors that affect cor-
rect automatic classification, and areas for future
work.
Contact: rockdj@cc.gatech.edu;
critchlow1@llnl.gov

1 Introduction

The World Wide Web provides a mechanism for unprece-
dented information sharing among researchers. Today,
scientists can easily post their research findings on the
Web or compare their discoveries with previous work, of-
ten spurring innovation and further discovery. The value
of accessing data from other institutions and the relative
ease of disseminating this data has increased the oppor-
tunity for multi-institution collaborations, which produce
dramatically larger data sets than were previously avail-
able and require advanced data management techniques
for full utilization.

As a side effect of these types of collaborations, some
tools become de facto standards in the communities as
they are shared among a large number of institutions. For
instance, consider the BLAST (Altschul et al., 1990) fam-
ily of applications, which allow biologists to find homo-
logues of an input sequence in DNA and protein sequence
libraries. BLAST is an example application that has been
enhanced as a Web source, which provides dynamic ac-
cess to large data sets. Many genomics laboratories pro-
vide a Web-based BLAST interface (National Library of
Medicine/National Institutes of Health, 2002; Gish, 2002)
to their sequence databases that allow scientists to eas-
ily identify homologues of an input sequence of interest.
This capability enhances the genomics research environ-
ment by allowing scientists to compare new sequences to
every known sequence and to have their work validated
by other members of the community. The addition of new
sequences at an increasingly frequent rate (NIAS DNA
Bank, 2003; National Center for Biotechnology Informa-

1

tion, 2003) further increases the value of this capability.
Unfortunately, while the underlying program on many

of these sites is the same, there is no common interface
or data exchange mechanism for the established BLAST
sources currently on the Web. To perform a BLAST
search against multiple sources, a scientist must manually
select the set of sites to query, enter their query into each
site, and integrate the results. There are numerous prob-
lems with this approach, including: the scientist may not
query the most relevant sites for their search, the search
must be entered multiple times, the results of the search
must be merged together by hand to obtain an integrated
set of results, and if an interface changes or moves, the sci-
entist must ascertain where the new interface is and how
to query it appropriately.

Providing integrated access to a large number BLAST
Web sources is a challenging but important problem in
genomics. The major challenges are to locate new Web
sources, evaluate them to determine if they provide a
BLAST interface, construct a wrapper for the source,
and integrate the source into a mediator system that can
provide a single point of access to all known sources
conforming to the interface. Source autonomy compli-
cates this problem: a cursory Web search yields hun-
dreds of sources that provide a BLAST interface, many
of which do not appear in bioinformatics directories (DB-
CAT, 2002). Manually maintaining a wrapper library
will not scale to accommodate the growth of genomics
data sources on the Web, challenging us to produce an
automated system that can find, classify, and wrap new
sources without constant human intervention. This paper
presents our approach for automatic classification of new
Web sources into relevance categories that eliminates the
human effort required to maintain a current repository of
sources. The contributions of this paper are:� A specification for describing classes of Web

sources. These service class descriptions represent
the salient features of the class concisely while pro-
viding enough information to distinguish instances
of the class from other sources.� A practical, heuristic approach to classifying arbi-
trary Web sources according to such a description.

This classification system is part of an ongoing research
effort to build an automated integration system for Web
sources. Our discussion in this paper focuses on BLAST
interfaces to concretely demonstrate the approach, but
these flexible techniques are generic and can be easily ap-
plied to other domains. In Section 2, we discuss research
related to our work. We present our service description
format in Section 3 and the automatic classification sys-
tem in Section 4. Section 5 describes our experimental

evaluation using results obtained from applying our tech-
niques to a set of BLAST sequence search services on the
Web. As part of this discussion, we identify character-
istics of sources that our prototype cannot currently han-
dle. Developing techniques to address these characteris-
tics forms the focus of ongoing work. We conclude with
an examination of this work and future research opportu-
nities.

2 Related Work

Our work is inspired by the ShopBot agent (Doorenbos
et al., 1997) whose purpose is to assist users in the task
of online shopping. ShopBot uses a domain description
that lists useful attributes about the services in question.
The authors addressed the problems of learning unknown
vendor sites and integrating a set of learned sources into
a single interface. Our present work addresses the related
problem of automatically classifying services from an ar-
bitrary set of sites. The service class description format
we describe provides greater descriptive power than Shop-
Bot’s domain descriptions and can specify complex data
types and source control flow information.

Related to this work is the problem of heterogeneous
data source integration. There are several research and
commercial systems for querying heterogeneous data
sources. Zadorozhny et al. (Zadorozhny et al., 2002)
describe a wrapper and mediator system for limited-
capability Web sources that includes query planning and
rewriting capabilities. Information Manifold (Levy et al.,
1996) targets the myriad of Web interfaces to general pur-
pose data, using a declarative source description for these
sources combined with a set of query planning and op-
timization algorithms. The TSIMMIS (Chawathe et al.,
1994) system provides mechanisms for describing and in-
tegrating diverse data sources while focusing on assist-
ing humans with information processing and integration
tasks.

Researchers have also examined heterogeneous data
integration in the domain of biological data. Discov-
eryLink (Haas et al., 2001) provides access to wrapped
data sources and includes query planning and optimiza-
tion capabilities. Eckman et al. (Eckman et al., 2001)
present a similar system with a comparison to many ex-
isting related efforts. BioKleisli (Davidson et al., 1997)
provides access to complex sources with structured data
but does not include query optimization.

Our goal is to construct a system that can automatically
discover and integrate bioinformatics Web sources. We
seek to unify a class of sources such as BLAST behind a
single interface that will maintain a current set of sources
without manual intervention. This paper focuses on the
classification aspect of this problem, which the above sys-

2

tems do not address. Many of these mediation systems
could utilize the results of our classification system to
identify sources to wrap.

Automatic discovery of Web sources apropos to a par-
ticular domain involves both locating sources and de-
termining their relevance to the domain; this paper ad-
dresses only the second step. Locating sources in the con-
text of the Web typically involves a crawler that treats
sites as nodes in a graph connected by hyperlink edges.
Starting from a set of root pages, a crawler traverses the
graph in some order specific to its goals and processes
the sites it encounters. Part of this process involves ex-
tracting new hyperlinks to crawl from the encountered
sites. While simple on the surface, Web crawling presents
several research and implementation challenges, many of
which have been addressed in the literature and commer-
cially (Brin & Page, 1998; Miller & Bharat, 1998; Hey-
don & Najork, 1999). There is active research into topic
driven or focused crawlers; Srinivasan et al. (Srinivasan
et al., 2002) present such a crawler for biomedical sources
that includes a treatment of related systems.

3 Service Class Descriptions

Our approach to discovery and classification of Web
sources groups them into service classes that share com-
mon functionality but not necessarily a common interface.
Service classes are specified by a service class descrip-
tion, which uses an XML format to define the relevant as-
pects of a category of Web sources from an application’s
perspective. The service class description format supports
the source discovery problem by providing a general de-
scription of the type of source that is considered interest-
ing. It defines the data types that comprise tho service
arguments as well as any intermediate types that may ap-
pear in a source. It establishes a general description of the
interface used by source class members and outlines in-
tervening control points. Finally, it lists examples that are
employed during source evaluation. Each of these com-
ponents are described in detail in the remainder of this
section.

The service class description provides a mechanism for
encapsulating the defining components that are common
to all members of the class and is the means for hiding in-
significant differences between individual sources. How-
ever, it must also provide enough information to differ-
entiate between a set of arbitrary Web sources. We ex-
pect that service class descriptions will be crafted in con-
junction with domain scientists interested in utilizing au-
tomatic source discovery for their own application areas.
Thus they must be straightforward to create, although this
can be fulfilled by the creation of a graphical description
construction tool. This frees each user to determine the

<type name="DNASequence"
type="string"
pattern="[GCATgcat-]+" />

<type name="AlignmentSequenceFragment" >
<element name="AlignmentName"

type="string"
pattern="[:alpha:]+:" />

<element type="whitespace" />
<element name="m"

type="integer" />
<element type="whitespace" />
<element name="Sequence"

type="DNASequence" />
<element type="whitespace" />
<element name="n"

type="integer" />
</type>

Figure 1: Some nucleotide BLAST type definitions.

important characteristics of their domain and customize
the search according to their individual requirements.

3.1 Types

The first component of a service class description speci-
fies the data types that are used by members of the service
class. Types in this context are analogous to those in pro-
gramming languages. They are used to describe the input
and output parameters of a service class and any data ele-
ments that may be required during the course of interact-
ing with a source. The service class type system is mod-
eled after the XML Schema (Fallside, 2001) type system
and includes constructs for building atomic and complex
types. Atomic types are simple valued data elements such
as strings and integers. The type system provides sev-
eral built in atomic types that can be used to create user-
defined types defined by restriction. The DNASequence
type in Figure 1 is an example of an atomic type defined
by restriction in the nucleotide BLAST service class de-
scription.

Atomic types can be composed into complex types,
which are formed by composition of basic types into
larger units. Figure 1 shows the specification of a nu-
cleotide BLAST alignment sequence fragment, which is
a string similar to:

Query: 280 TGGCAGGCGTCCT 292

The above string in a BLAST result would be recognized
as an AlignmentSequenceFragment and annotated
as such for later analysis.

Composition of elements into complex types can be in
the form of a simple sequence of elements, such as the

3

AlignmentSequenceFragment definition. List def-
initions are also allowed using the constraints minOc-
curs and maxOccurs, which define the expected car-
dinality of a particular sub-element within a type. The
choice operator allows types to contain a set of possi-
ble sub-elements from which one will match.

3.2 Control Flow

Although all members of a service class provide similar
functionality, the mechanics of different Web sources are
virtually unconstrained. Nucleotide BLAST sites provide
interfaces ranging in complexity from a single input pa-
rameter for the sequence to sites having multiple input
parameters spread across several pages and several stages
of results. Further, when evaluating a given site, an auto-
matic discovery agent will not know a priori if the site is
a member of the given service class; if it is not, the agent
may spend considerable effort wandering through a com-
plicated workflow on an unrelated source.

To confront this problem, the service class description
format provides syntax for enumerating the expected nav-
igational paths used by members of the service class. This
control flow graph consists of a set of states connected by
edges. Each state has an associated type; data from a Web
source is compared against the type associated with the
control flow states to determine the flow of execution of a
source from one state to another. Our nucleotide BLAST
service class description, for example, has a single start
state that defines the type of start page a class member
must contain: in this case, any member of the nucleotide
BLAST service class must have a start page that includes
an HTML form with at least one text entry field.

3.3 Examples

The final component of the service class description is the
examples. Examples contain input arguments and can be
executed against an instance of the service class. While
not strictly necessary for articulating a service class, the
examples play an important role during analysis of a
source. An example can be used to check if a site accepts
input as required by the service class. The examples may
also include negative or null queries that are expected to
produce no results. Negative queries are useful for both
validation purposes and for differentiating between data
elements and template or style information in a source’s
responses.

Figure 2 shows an example used in a nucleotide
BLAST description that illustrates the components of
an example argument. The attribute required states
whether an argument is a required input for all members
of the service class. In this case, all members of the nu-
cleotide BLAST service class are required to accept a

<example>
<arguments>

<argument required="true">
<name>sequence</name>
<type>DNASequence</type>
<hints>
<hint>sequence</hint>
<inputType>text</inputType>

</hints>
<value>TTGCCTCACATTGTCACTGCAAAT

CGACACCTATTAATGGGTCTCACC
</value>

</argument>

<argument required="false">
<name>BlastProgram</name>
<type>string</type>
<hints>
<hint>program</hint>

</hints>
<value>blastn</value>

</argument>
</arguments>

<result type="SummaryPage" />
</example>

Figure 2: A nucleotide BLAST example.

DNA sequence as input. The argument lists the type of
the input as well as a value that is used during classifica-
tion. The optional hints section of the argument sup-
plies clues to the site classifier that help select the most
appropriate input parameters on a Web source to match
an argument. This example also includes an argument for
the program type, which is specified as an optional argu-
ment since some BLAST sources do not have a program
selector input.

The argument hints specify the expected input parame-
ter type for the argument and a list of likely form parame-
ter names the argument might match. Multiple name hints
are allowed, and each hint is treated as a regular expres-
sion to be matched against the form parameters. These
hints are written by the service class description writer
using their observation of typical members of the service
class. For example, a DNA sequence is almost always en-
tered into a text input parameter, usually with “sequence”
in its name. The DNA Sequence argument in a nucleotide
BLAST service class therefore includes a name hint of
“sequence” and an input hint of “text.”

4 Source Classification

Once a service class description has been defined, an auto-
matic discovery agent can begin identifying Web sources
of interest. This process encompasses two steps: locating
sources and determining if they are instances of a service

4

class. We have concentrated on the issue of identifying
members of the service class. Specifically, given an arbi-
trary Web site and a service class description, we deter-
mine if the Web site is a Web source conforming to the
interface defined by the description.

Analysis of the site starts with the control flow graph,
which anchors the interface to the subset of input types
specified as start points for this service class. Each node
in the graph is treated as a state in an automaton: a match
against a source at the current state allows the analysis to
proceed to a connected state. The service classifier be-
gins the analysis of a Web source by attempting to match
the start page of the source against one of the start nodes
in the control flow graph. If no matches are found, the
source cannot match the service class and is discarded. If
the start page matches, the classifier generates a series of
queries using the examples provided in the service class
description. For each response, the classifier then follows
the outbound links and tests the responses of the source
against the possible states in the control graph. This pro-
cess continues until either the site matches one of the end
states in the control flow graph or there are no more pos-
sible queries to try. The current prototype implementation
of this source classifier is limited to simple control graphs
consisting of a start state and end state only; enhancing
the prototypes processing capabilities is a focus of ongo-
ing work.

The output of the analysis and classification process
states whether the input Web source matched the service
class. If the site is a match, the classifier also lists the
steps used at each control state to produce the result. This
output includes information about the meaning of form
parameters in the source along with the values used for
each parameter.

ta

tb

tc td

s

e

a. b.

Figure 3: Control Flow Graph for a nucleotide BLAST
service (a) with potential Web source match (b).

Figure 3 shows part of this process visually. The con-
trol flow graph for a nucleotide BLAST service appears at

(a) while (b) shows a representation of the control flow of
a typical nucleotide BLAST source. In the graphs, start
and end states are represented with circles and diamonds
respectively, while interior points are shown with squares.
The type associated with each state is listed inside it: t �)
nucleotide BLAST Input, t �) formatting and query sta-
tus, t �) nucleotide BLAST Result Summary, and t �) nu-
cleotide BLAST Empty Result. If the Web source’s start
page (s) does not match the type of this control graph’s
start state (t �), the classifier returns a negative result. If
the start page matches, the classifier uses the examples to
query the site, which returns its result (e). If this result
is a nucleotide BLAST Result Summary or Empty Result,
the type will match one of the end states (t �) or (t �). In
this case, the classifier returns a positive result with the
details needed to execute a query against the site. Note
that although the state graph for the Web source is shown
in Figure 3b, the service classifier will not know the con-
trol graph for the source beforehand. A significant part
of the classifier’s task is to infer this state graph using the
attempted queries.

4.1 Query Generation

Generating queries with which to test a candidate service
class member is a significant challenge when analyzing
a Web source but is vital to verifying whether the source
is an instance of the service class. By probing a source
using a variety of queries, different paths in the control
flow graph can be explored to produce the subset of the
control graph that models the source. Without generat-
ing queries with which to test a source, an analyzer could
do little more than examine the source’s form interfaces,
which reveal very little about the nature of the underlying
source. The query generator takes the examples from the
service class description and produces a set of test queries
that matches each argument in an example with a param-
eter in the sources’s forms. Assume that a given source
contains a set of forms

�
, where each form �
	�� �

has 	 parameters. The number of possible queries � for an
example can be estimated as

��� � ���� 	����
� 	���

where � is the number of arguments in the example. Ex-
haustive search of the query space is clearly undesirable
for sites with even a small number of form parameters: ex-
ecuting every query takes a significant amount of time and
network bandwidth and is not likely to please the main-
tainers of the site being analyzed.

To combat these problems, we have developed a set of
simple heuristics for choosing a small subset of � to test

5

that, despite their simplicity, work well for quickly de-
termining class membership of real Web sources. These
heuristics are based on four key observations:

1. Parameters have type information

2. Parameters tend to be named purposefully

3. Parameters tend to have reasonable defaults

4. Output has common, recognizable components

Although HTML is not a data definition language, the
parameters in a form reveal something about their ex-
pected values via their input tag’s type attribute. Know-
ing that a particular parameter is a radio button limits
the range of values that can be placed in it. The param-
eters also reveal something of their purpose by way of
their name: on the overwhelming majority of sites used
in our experiments, the name of the sequence input pa-
rameter contained the word “sequence.” Many of the sites
we examined expose a large subset of the options avail-
able to the BLAST program in their forms, but most of
these parameters are set to default values that can be ig-
nored without affecting a source’s ability to produce re-
sults. The output format of the tested sources uses a con-
sistent alignment format that can be recognized even when
embellished with additional data.

Service
Class

Processor

User
Agent
Library

Enumerator
Query

...

Class
Description

Service

Web
Service Forms

Types,
Control Graph,

Examples

Web Queries

Figure 4: Query generation process.

Figure 4 displays the query generation process. A query
enumerator combines the components from a service class
description with the forms from a Web source. The out-
put of the combination is a set of queries; the set contains
a query for all pairings of the example’s arguments with
each parameter in all of the start page’s forms. Each query
is then assigned a score using a simple function that as-
signs points to a query for each parameter that matches
the hints of its argument. Once a suitable ordering has
been constructed, the queries will be executed in priority
order until either one leads to an end control state or there
are no more queries to execute.

5 Experimental Results

We have constructed a prototype of the source discovery
system described here to test the validity of our approach.
The prototype is implemented in Java and can examine a
set of supplied URLs or crawl the Web looking for sources
matching a description. Interaction with the Web is han-
dled by the HttpUnit user agent library (Gold, 2003).

5.1 Methodology and Data

The data for our experiments consists of a list of 116
URLs that provide a BLAST interface that was gathered
from the results of a Web search. The sites vary widely in
complexity: some have forms with fewer than 5 input pa-
rameters, while others allow minute control over many of
the options of the BLAST algorithm. Some of the sources,
including the BLAST server at NCBI, include an interme-
diate step in the query submission process. A significant
minority of the sources use JavaScript to validate user in-
put or modify parameters based on other choices in the
form. Despite the wide variety of styles found in these
sources, our prototype is able to recognize a large number
of the sites using a service class description of approxi-
mately 150 lines.

We used a small subset of the nucleotide BLAST URLs
for evaluating the service class description language and
our prototype implementation. The remainder of the
sources were used for experimental testing after the pro-
totype implementation was deemed ready. Sites that were
manually determined to be non-functional or that returned
results exclusively via email were excluded from our ex-
periments and do not appear as part of the reported results.

5.2 Results

Table 1 shows the results of our experiments. The initial
test set is the set of Web sources that were tested repeat-
edly as the prototype matured and helped shape its design.
The remaining sources were classified once. Sites listed
as successes are those that can be correctly queried by the
analyzer to produce an appropriate result, either a set of
alignments or an empty BLAST result. An empty result
indicates that the site was queried correctly but did not
contain any homologues for the input sequence.

Failed sites are all false negatives that fall into two cat-
egories: indirection sources and processing failures. An
indirection source is one that interposes some form of in-
termediate step between entering the query and receiving
the result summary. For example, NCBI’s BLAST server
contains a formatting page after the query entry page that
allows a user to tune the results of their query. Simpler
indirection mechanisms include intermediate pages that
contain hyperlinks to the results. We do not consider

6

Successfully Failed Sites Percent
Data Set Identified Indirection Processing Total Success
Initial test set 18 5 4 27 66.7%
Experimental set 60 5 22 87 68.9%

Table 1: Sites classified using the nucleotide BLAST service class description.

server-side or client-side redirection to fall into this cat-
egory as these mechanisms are standardized and are han-
dled automatically by Web user agents. Recognizing and
moving past indirection pages presents several interesting
challenges because of their free-form nature. Incorporat-
ing a general solution to complex, multi-step Web sources
is part of our future work.

Processing errors were either failures in handling the
JavaScript commands found on some sources or problems
emulating the behavior of standard user agents. A few
Web design idioms, such as providing results in a new
window or multi-frame interfaces, are not yet handled by
the prototype. We are working to make our implementa-
tion more compliant with standard Web browser behavior.
The main challenge in dealing with processing failures is
accounting for them in a way that is generic and does not
unnecessarily tie site analysis to the implementation de-
tails of particular sources.

6 Conclusion

It is clear that the World Wide Web is an important tool for
scientists and researchers. As the Web matures, we expect
Web sources to continue proliferating while also adopting
more robust data exchange standards like XML and RDF.
We have explored the use of Web sources in the bioin-
formatics domain and have seen that the increased num-
ber of sources promises greater research potential if the
data management issues can be overcome. Our approach
to this problem combines service class descriptions with
analysis techniques that map sources on the Web back to
that description. We have shown how these concepts can
be applied in an existing application scenario, Web-based
BLAST genome sequence search. Finally, we have veri-
fied our claims experimentally by using a BLAST service
class description to identify a group of Web sites.

Our initial results are very encouraging, as our cate-
gorization program consistently identified approximately
two-thirds of the input URLs correctly. We attribute this
success to the regularity of the returned data sets and the
observed characteristics of Web sources. Of course, these
preliminary results leave room for improvement. Many of
the sources had complex interfaces that are not yet rec-
ognized by the prototype, which is limited to processing

simple control graphs as noted previously. The remaining
sources included sites that use JavaScript and a few with
quirky interfaces.

We are continuing development of new heuristics for
site processing and recognition. In particular, we plan to
expand the data type handling system to identify common
types of indirection pages encountered during BLAST
searches. The system will also be extended to support ag-
gregation of data from hyperlinks—e.g. gene summaries
commonly found in BLAST results. Longer term work
will examine applying existing and novel information re-
trieval techniques to increase the number of recognized
sources and further improve performance. For exam-
ple, an advanced classification system could compare new
sources to those it has already classified: if the new source
matches a previously discovered source, the information
from the existing match can be used to guide analysis of
the new source.

7

References

Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. &
Lipman, D. J. (1990) Basic local alignment search
tool. Journal of Molecular Biology, 215 (3), 403–
410.

Brin, S. & Page, L. (1998) The anatomy of a large-scale
hypertextual Web search engine. Computer Net-
works and ISDN Systems, 30 (1–7), 107–117.

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland,
K., Papakonstantinou, Y., Ullman, J. D. & Widom,
J. (1994) The TSIMMIS project: integration of het-
erogeneous information sources. In 16th Meeting of
the Information Processing Society of Japan pp. 7–
18, Tokyo, Japan.

Davidson, S. B., Overton, G. C., Tannen, V. & Wong, L.
(1997) BioKleisli: a digital library for biomedical re-
searchers. Int. J. on Digital Libraries, 1 (1), 36–53.

DBCAT (2002). DBCAT, The
Public Catalog of Databases.
http://www.infobiogen.fr/services/dbcat/.

Doorenbos, R. B., Etzioni, O. & Weld, D. S. (1997) A
scalable comparison-shopping agent for the world-
wide web. In Proceedings of the First International
Conference on Autonomous Agents (Agents’97),
(Johnson, W. L. & Hayes-Roth, B., eds), pp. 39–48
ACM Press, Marina del Rey, CA, USA.

Eckman, B., Lacroix, Z. & Raschid, L. (2001) Opti-
mized seamless integration of biomolecular data. In
IEEE International Conference on Bioinformatics
and Biomedical Egineering pp. 23–32.

Fallside, D. C. (2001). XML Schema Part 0: Primer.
Technical report World Wide Web Consortium
http://www.w3.org/TR/xmlschema-0/.

Gish, W. (2002). BLAST. http://blast.wustl.edu/.

Gold, R. (2003). HttpUnit. http://httpunit.sourceforge.net.

Haas, L., Schwarz, P., Kodali, P., Kotlar, E., Rice, J. &
Swope, W. (2001) Discoverylink: a system for inte-
grating life sciences data. IBM Systems Journal, 40
(2).

Heydon, A. & Najork, M. (1999) Mercator: a scalable,
extensible web crawler. World Wide Web, 2 (4), 219–
229.

Levy, A. Y., Rajaraman, A. & Ordille, J. J. (1996) Query-
ing heterogeneous information sources using source
descriptions. In Proceedings of the Twenty-second
International Conference on Very Large Databases
pp. 251–262 VLDB Endowment, Saratoga, Calif.,
Bombay, India.

Miller, R. & Bharat, K. (1998) SPHINX: a framework
for creating personal, site-specific web crawlers. In
Proceedings of the Seventh International World Wide
Web Conference.

National Center for Biotechnology Infor-
mation (2003). GenBank Statistics.
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.

National Library of Medicine/National Institutes of
Health (2002). National Center for Biotechnology
Information. http://www.ncbi.nih.gov/.

NIAS DNA Bank (2003). Growth of daily
updates of DNA Sequence Databases.
http://www.dna.affrc.go.jp/htdocs/growth/D-daily.html.

Srinivasan, P., Mitchell, J., Bodenreider, O., Pant, G. &
Menczer, F. (2002) Web crawling agents for retriev-
ing biomedical information. In Proceedings of the
International Workshop on Agents in Bioinformatics
(NETTAB-02).

Zadorozhny, V., Raschid, L., Vidal, M.-E., Urhan, T.
& Bright, L. (2002) Efficient evaluation of queries
in a mediator for websources. In Proceedings of
ACM/SIGMOD Annual Conference on Management
of Data.

8

